479 字
2 分钟
Convex sets
2024-01-21
  • Affine sets
    • Line through points
    • 等价性:与 linear equation {xAx=b}\{x|Ax=b\} 等价
  • Convex sets
    • Line segment between points
    • Convex cone
      • Conic (nonnegative) combination of points x1,x2:x=θ1x1+θ2x2,θ10,θ20x_{1}​,x_{2}​: x=\theta_1x_1+ \theta_2x_2, \forall \theta_1 \ge0, \theta_2 \ge 0
      • Convex cone: a set that contains all conic combinations of points in the set.
  • Some important examples of convex sets
    • Hyperplanes and halfspaces
      • hyperplanes are affine and convex
      • halfspaces are convex
    • Euclidean balls and ellipsoids
      • (Euclidean) ball: B(xc,r)={x xxc2r}={xc+ru u21}B(x_c,r)=\{ x|\ ||x-x_c||_2 \le r \} = \{ x_c+ru|\ ||u||_2 \le 1 \}
      • Ellipsoid: {x(xxc)TP1(xxc)1}\{ x|(x-x_c)^T P^{-1} (x-x_c) \le 1 \}, with PP symmetric positive definite.
        • other representation: {xc+Au xu21}\{ x_c + Au|\ ||x_u||_2 \le 1 \}
        • decomposition of symmetric positive definite matrix
          • cholesky decomposition: P=RTR=LLTP=R^TR=LL^T
          • half power decomposition: P=P12P12P=P^{\frac{1}{2}} P^{\frac{1}{2}}
        • Principal axes
          • eigendecomposition
            • eigenvectors qiq_i of PP give the principal axes
            • the width corresponding to qiq_i is 2λi2 \sqrt{\lambda_i}​​
    • Norm
      • Common vector norms
        • Euclidean norm
        • pp -norm (p1)(p \ge 1)
        • Chebyshev norm (\infty-norm)
        • quadratic norm: xA=(xTAx)12||x||_A = (x^T A x)^{\frac{1}{2}} ​, with AA symmetric positive definite
      • Common matrix norm
        • Frobenius norm: XF=(i=1mj=1nXij2)12||X||_F = (\sum_{i=1}^m \sum_{j=1}^n X_{ij}^2) ^{\frac{1}{2}}
        • 2-norm: X2=supy0Xy2y2=σmax(X)||X||_2 = \underset{y \ne 0}{\sup} \frac{||Xy||_2}{ ||y||_2}=\sigma _{\max} (X)
    • Norm balls and norm cones
      • Norm ball: {x xxcr}\{ x|\ ||x-x_c|| \le r \} convex sets
      • Norm cone: {(x,t) xt}\{ (x,t) |\ ||x|| \le t \} convex cone
    • polyhedra
    • positive semidefinite cone
      注意半正定是 convex,但正定不是,因为正定不能取 0,所以系数也不能取 0.
      • S+nS^n_+​ is a convex cone
  • Operations that preserve convexity
    • 证明 convexity 的两种方法
      • 定义
      • 通过操作获得
    • intersection
    • affine functions
      • the image of a convex set under ff is convex
      • the inverse image f1(C)f^{-1}(C) of a convex set under ff is convex.
        • CRmC \subseteq \mathbb{R}^m convex \to f1(C)={xRmAx+bC}f^{-1}(C) = \{ x \in \mathbb{R}^m | Ax + b \in C \} is convex.
          注意,这里没要求AA可逆,也就是说,原像有多个也行。
      • Examples
        • scaling, translation, projection
        • hyperbolic cone
        • solution set of linear matrix inequality
          • {xx1A1++xmAmB}\{ x|x_1 A_1 + \cdots + x_m A_m \le B \}, with Ai,BSpA_i, B \in S^p.
    • perspective function
    • linear-fractional functions
  • Generalized inequalities
    • proper cone: a convex cone KRnK \subseteq \mathbb{R}^n that satisfies three properties
      • K is closed
      • K is solid
      • K is pointed
    • generalized inequality: xKy    yxKx \le_K y \iff y -x \in K.
      • K\le_K ​ is not in general a linear ordering: we can have xKyx \nleq_K y and yKxyKxyKxy \nleq_K xy \nleq_K xy≰K​x.
      • two definitions of the minimum element.
        • 其他元素都比它大
        • 没有比它小
  • Dual cones
    • Inner products
      • Matrix: <X,Y>=tr(XTY)<X,Y> =\text{tr}(X^TY)
    • Dual cone of a cone K: K={y<y,x> 0 xK}K^*=\{ y|<y,x> \ \geq 0 \ \forall x \in K \} note: definition depends on choice of inner product
    • ![[Convex sets 2024-01-20 20.27.25.excalidraw]]

[!note] 迹运算

  • 性质:tr(ABC)=tr(BCA)=tr(CAB)\text{tr}(ABC)=\text{tr}(BCA)=\text{tr}(CAB) 因此,就可以得到下列表达式 tr(qqTX)=qTXq\text{tr}(qq^{T}X) = q^{T}X q 利用交换性质,以及标量的迹是其本身这个性质,很方便。
Convex sets
https://fuwari.vercel.app/posts/2_convex_sets/
作者
pride7
发布于
2024-01-21
许可协议
CC BY-NC-SA 4.0